International Conference

Permanent URI for this collectionhttps://dspace.psgrkcw.com/handle/123456789/162

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    MULTI-CLASS CLASSIFICATION OF INSECTS USING DEEP NEURAL NETWORKS
    (IEEE Xplore, 2023-01-23) Santhiya M; Priyadharshini M; Agshalal Sheeba J; Karpagavalli S
    Insects are crucial to the functioning of nature. There are more than a million described species of living beings in the modern world. Since the majority of today’s farmers and agriculturalists are newer generations of people, identifying and classifying insects is essential. The classification of insects is a difficult undertaking in the agricultural industry. In the proposed work, multi-class classification of insects using a Convolutional Neural Network architecture, VGG19 had been carried out. In the taxonomic classification of insects, 5 insects fall within insecta class which include butterfly, dragonfly, grasshopper, ladybird, and mosquito data had been collected to train, test, and validate the convolutional neural network, The performance of the model had been analyzed using different parameters and presented.
  • Item
    OPTIMIZING PRE-PROCESSING FOR FOETAL CARDIAC ULTRA SOUND IMAGE CLASSIFICATION
    (Springer Link, 2023-03-28) Divya M.O; Vijaya M.S
    Recent research shows that Foetal cardiac anomalies which gets diagnosed postnatally makes a grave negative impact on the delivery outcome. The situation becomes lethal when severe anomalies get diagnosed after the baby is born. Many medical researches shows that delivery outcome could be better when the anomaly is diagnosed prenatally. There are hardly any research and development happening in this area where automation and prediction are on prime focus for finding the cardiac anomaly using Ultra Sound Imaging Technique (USIT). The USIT during the second trimester is universal for every pregnant woman also the second trimester is the best time to take appropriate medical assistance for the foetus in case of anomaly. This research is experimental study to setup a standard dataset for foetal cardiac anomaly USITs and to identify the appropriate pre-processing technique for binary classification of USIT. The 1200 images in the dataset are organised in two classes half of the images are with anomaly and other half without anomaly. The class with anomaly includes images representations from 17 anomalies which is theoretically established as structural anomalies of heart. All anomalies are present in the dataset approximately equal in ratio. The dataset has undergone the following pre-processing techniques, blur removal, noise removal and contrast normalisation. The Alex-net model is trained to create a binary classifier for the FetalEcho dataset after applying the different pre-processing techniques. Eight rounds of classification have been performed with eight versions of the FetalEcho dataset. The worst results were shown by the row dataset (FetalEcho_V01) when the classification experiment have been performed with the AlexNet classifier. The dataset FetalEcho_V05, created after removing blur and noise, is identified as the best performance for classification, amongst the eight datasets.
  • Item
    ARTIFICIAL INTELLIGENT MODELS FOR AUTOMATIC DIAGNOSIS OF FOETAL CARDIAC ANOMALIES: A META-ANALYSIS
    (Springer Link, 2023-01-01) Divya M.O; Vijaya M.S
    The foetal anomaly scanning is one of the most challenging areas where accuracy of diagnosis much fluctuating with respect to the expertise of the radiologist and the mental equilibrium of the radiologist at the time of scanning. Amongst the various anomalies, foetal heart anomaly diagnosis expects precise and sensitive intellectual presence since perilous congenital heart diseases are one of the common causes resulting in the major population of infant mortality or into permanent natal faults. The accuracy of manual diagnosis of foetal cardiac abnormalities from the ultrasound scan images vary based on the human expertise and the presence of mind. Therefore, the scope of computer-assisted judgement can produce accurate diagnosis irrespective of the operator’s profile. Numerous researches are going on to explore the scope of computer-assisted judgement of abnormalities using ultrasound imaging technique (USIT), specifically using machine learning and deep learning models. This work exploits the opportunities of computer-assisted diagnosis in foetal cardiac anomaly diagnosis as this is one of the most sensitive areas where appropriate diagnosis can save a life and a wrong diagnosis may lose a life unnecessarily.
  • Item
    DEEP NEURAL NETWORK OPTIMIZATION FOR SKIN DISEASE CLASSIFICATION FORECAST ANALYSIS
    (IEEE, 2022-03-26) Kalaivani A; Karpagavalli S
    Skin lesions are a prevalent condition that causes misery, many of which can be severe, for millions of individuals worldwide. Consequently, Deep learning seems to be an increasingly popular approach in recent years, and it may be a strong tool in difficult, earlier domains, specifically in health science, which is now dealing with a number of medical resources. In this paper, presented an interactive dermoscopy images diagnosis framework based on an gathering of intelligent deep learning model system for image classification to make advances their person accuracies within the prepare of classifying dermoscopy pictures into several classes such as melanoma, keratosis and nevus when we have not sufficient annotated images to train them on. We integrate the classification layer results for two distinct deep neural network designs to obtain excellent classification accuracy. More precisely, we combining robust convolutional neural networks (CNNs) into a unified structure, with the final classification relying on the weighted outcome of the respective CNNs by predictive ensemble methods and fine-tuning classifiers utilizing ISIC2019 images. Furthermore, the outliers and the substantial class imbalance are handled in order to improve the categorization of the disease. The experimental reveal that the framework produced result that are comparable to other models of conventional art. A substantial improvement in accuracy of 96.2 percentage indicated the efficiency of the proposed Predictive Ensemble Deep Convolutional Neural Networks Classifier (PE-DCNN Classifier) model and this study effectively built a system with all the important features.