International Conference
Permanent URI for this collectionhttps://dspace.psgrkcw.com/handle/123456789/162
Browse
Item ANALYSIS OF TAMIL CHARACTER WRITINGS AND IDENTIFICATION OF WRITER USING SUPPORT VECTOR MACHINE(IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 2014 indexed in IEEE Xplore Digital Library, 2014) Thendral T; Vijaya M S; Karpagavalli SDistinctive Handwriting is a thought provoking task in writer identification. The style and shape of the letters written by the same writer may vary and entirely different for different writers. Alphabets in the handwritten text may have loops, crossings, junctions, different directions and so on. Therefore exact prediction of individual based on his/her handwriting is highly complex and challenging task. This paper proposes a new model for learning the writer's identity constructed on Tamil handwriting. Handwritten documents written by the writers are scanned and segmented into words. Words are further segmented into characters for character level writer identification. The character writings in Tamil are analyzed and their describing features are defined. The Writer identification problem is formulated as classification task and a pattern classification technique namely Support Vector Machine has been employed to construct the model. It has been reported about 90. 6% of prediction accuracy by RBF kernel based classification model in character level writer identification.Item ARTIFICIAL INTELLIGENT MODELS FOR AUTOMATIC DIAGNOSIS OF FOETAL CARDIAC ANOMALIES: A META-ANALYSIS(Springer Link, 2023-01-01) Divya M.O; Vijaya M.SThe foetal anomaly scanning is one of the most challenging areas where accuracy of diagnosis much fluctuating with respect to the expertise of the radiologist and the mental equilibrium of the radiologist at the time of scanning. Amongst the various anomalies, foetal heart anomaly diagnosis expects precise and sensitive intellectual presence since perilous congenital heart diseases are one of the common causes resulting in the major population of infant mortality or into permanent natal faults. The accuracy of manual diagnosis of foetal cardiac abnormalities from the ultrasound scan images vary based on the human expertise and the presence of mind. Therefore, the scope of computer-assisted judgement can produce accurate diagnosis irrespective of the operator’s profile. Numerous researches are going on to explore the scope of computer-assisted judgement of abnormalities using ultrasound imaging technique (USIT), specifically using machine learning and deep learning models. This work exploits the opportunities of computer-assisted diagnosis in foetal cardiac anomaly diagnosis as this is one of the most sensitive areas where appropriate diagnosis can save a life and a wrong diagnosis may lose a life unnecessarily.Item AUTOMATIC TAG RECOMMENDATION FOR JOURNAL ABSTRACTS USING STATISTICAL TOPIC MODELING(Springer Advances in Intelligent Systems and Computing(AISC Series), 2015) Anupriya P; Karpagavalli STopic modeling is a powerful technique for unsupervised analysis of large document collections. Topic models conceive latent topics in text using hidden random variables, and discover that structure with posterior inference. Topic models have a wide range of applications like tag recommendation, text categorization, keyword extraction and similarity search in the broad fields of text mining, information retrieval, statistical language modeling. In this work, a dataset with 200 abstracts fall under four topics are collected from two different domain journals for tagging journal abstracts. The document model is built using LDA (Latent Dirichlet Allocation) with Collapsed Variational Bayes (CVB0) and Gibbs sampling. Then the built model is used to find appropriate tag for a given abstract. An interface is designed to extract and recommend the tag for a given abstract.Item CLASSIFICATION OF HEART RATE DATA USING BFO-KFCM CLUSTERING AND IMPROVED EXTREME LEARNING MACHINE CLASSIFIER(Sri Sakthi Institute of Enginerring and Technology, 2016-01-07) R, Kavitha; T, ChristopherThe Electrocardiogram is a tool used to access the electrical recording and muscular function of the heart and in last few decades it is extensively used in the investigation and diagnosis of heart related diseases. It must be noted that the heart rate fluctuates not only because of cardiac demand, however is also influenced as a result of the occurrence of cardiac disease and diabetes. In addition, it has been shown that Heart Rate Variability (HRV) may well be utilized as an early indicator of cardiac disease susceptibility and the existence of diabetes. As a result, the HRV can be exercised for early clinical test of these diseases. Most existing systems make use of Support Vector Machine (SVM), owing to the generalization performance, it is not sufficient for the accurate classification of heart rate data. In order to overcome this complication, Improved Extreme Learning Machine (IELM) classifier is used, to obtain the best parameter value and best feature subset through the use of Bacterial Foraging Optimization (BFO) that feed the classifier. Here in this work, features of linear and nonlinear are extracted from the HRV signals. Following the preprocessing, feature extraction is done effectively together with feature selection with the assistance of BFO for the purpose of data reduction. Subsequently, proposed a scheme to integrate Kernel Fuzzy C-Means (KFCM) clustering and classifier to adequately enhance the accuracy result for ECG beat classification. The accuracy result for classification of heart rate data is shown in the proposed scheme.Item CLASSIFICATION OF SEED COTTON YIELD BASED ON THE GROWTH STAGES OF COTTON CROP USING MACHINE LEARNING TECHNIQUES(IEEE Xplore and IEEE CS Digital Library, 2010-06) Jamuna K S; Karpagavalli S; Vijaya M S; Revathi P; Gokilavani S; Madhiya ECotton, popularly known as "White Gold" has been an important commercial crop of national significance due to the immense influence of its rural economy. Cotton seed is an important and critical link in the chain of agricultural activities extending farmer industry linkage. Cotton yield is associated with high quality seed as the seed contains in itself the blue print for the agrarian prosperity in incipient form. Transfer of technology to identify the quality of seeds is gaining importance. Hence this work employs machine learning approach to classify the quality of seeds based on the different growth stages of the cotton crop. Machine learning techniques - Naïve Bayes Classifier, Decision Tree Classifier and Multilayer Perceptron were applied for training the model. Features are extracted from a set of 900 records of different categories to facilitate training and implementation. The performance of the model was evaluated using 10 -fold cross validation. The results obtained show that Decision Tree Classifier and Multilayer Perceptron provides the same accuracy in classifying the seed cotton yield. The time taken to build the model is higher in Multilayer Perceptron as compared to the Decision Tree Classifier.Item A COMPARATIVE ANALYSIS OF WEB BASED MULTIPLE SEQUENCE ALIGNMENT TOOLS USING CERTAIN METABOLICALLY IMPORTANT PROTEIN CODING GENE SEQUENCES(Dr.NGP Arts and Science College, Coimbatore, 2018-09-02) Boobashini S; Arunpriya C; Balasaravanan TMultiple sequence alignment is an alignment of three or more biological sequences, generally protein, DNA, or RNA. The input set of query sequences are assumed to have an evolutionary relationship i.e., they are descended from a common ancestor. The resulting MSA, sequence homology can be inferred and phylogenetic analysis can be conducted to assess the sequences' shared evolutionary origins. In this paper, six different mammalian species gene sequence were compared with human gene sequences. Metabolically important genes such as Amylase, ATPase, Cytochrome-B, Haemoglobin, and Insulin where chosen for comparison. The DNA sequences of FASTA format was retrieved from NCBI databank and used as input sequences for Multiple sequence analysis using ClustalW, MUSCLE, and T-Coffee. Multiple sequence alignment score and phylogenetic trees where obtained from all the three tools and discussed with the snapshots and findings.Item A DEEP ENSEMBLE MODEL FOR AUTOMATED MULTICLASS CLASSIFICATION USING DERMOSCOPY IMAGES(IEEE, 2022-03-31) Kalaivani A; Karpagavalli SIn medical diagnosis, manual skin tumor treatment is time consuming and exclusive, it is important to create computerized analytic strategies that can accurately classify skin lesions of many stages. A completely automatic way to classify skin lesions of many categories has been presented. Automatic dissection of skin lesions and isolation are two major and related functions in the diagnosis of computer-assisted skin cancer. Even with their widespread use, deep learning models are typically only intended to execute a single task, neglecting the potential benefits of executing both functions simultaneously. The Bootstrapping Ensembles based Convolutional Neural Networks (BE-CNN) model is proposed in this paper for the separation of skin lesions simultaneously and for classification. A Compute-Intensive Segmentation Network (CI-SN), comprise this model (improved-SN). On one hand, Compute-Intensive Segmentation Network creates uneven lesion covers that serves as a pre-bootstrapping, allowing it to reliably find and classify skin lesions. Both division and arrangement networks, in this approach, mutually transmit assistance and experience each other in a bootstrapping manner. However, to deal with the challenges posed by class inequality and simple pixel inequality, a novel method in segmentation networks is proposed. On the ISIC-HAM 10000 datasets, the proposed BE-CNN model is evaluated and found that it achieves mean skin lesion classification accuracy of 93.8 percentile, which is higher than the function of the separation of skin lesions representing the modern condition and stages techniques. Proposed outcomes demonstrate that via preparing a bound together model to execute the two tasks in a non-stop bootstrapping strategy, it is feasible to work on the presentation of skin sore division and grouping simultaneously.Item DEEP NEURAL NETWORK OPTIMIZATION FOR SKIN DISEASE CLASSIFICATION FORECAST ANALYSIS(IEEE, 2022-03-26) Kalaivani A; Karpagavalli SSkin lesions are a prevalent condition that causes misery, many of which can be severe, for millions of individuals worldwide. Consequently, Deep learning seems to be an increasingly popular approach in recent years, and it may be a strong tool in difficult, earlier domains, specifically in health science, which is now dealing with a number of medical resources. In this paper, presented an interactive dermoscopy images diagnosis framework based on an gathering of intelligent deep learning model system for image classification to make advances their person accuracies within the prepare of classifying dermoscopy pictures into several classes such as melanoma, keratosis and nevus when we have not sufficient annotated images to train them on. We integrate the classification layer results for two distinct deep neural network designs to obtain excellent classification accuracy. More precisely, we combining robust convolutional neural networks (CNNs) into a unified structure, with the final classification relying on the weighted outcome of the respective CNNs by predictive ensemble methods and fine-tuning classifiers utilizing ISIC2019 images. Furthermore, the outliers and the substantial class imbalance are handled in order to improve the categorization of the disease. The experimental reveal that the framework produced result that are comparable to other models of conventional art. A substantial improvement in accuracy of 96.2 percentage indicated the efficiency of the proposed Predictive Ensemble Deep Convolutional Neural Networks Classifier (PE-DCNN Classifier) model and this study effectively built a system with all the important features.Item DIABETIC RETINAL EXUDATES DETECTION USING EXTREME LEARNING MACHINE(CSI Annual Convention and International Conference on Emerging ICT for Bridging the Future and published in Springer Advances in Intelligent Systems and Computing(AISC Series), 2015) Asha P R; Karpagavalli SDiabetic Retinopathy is a disorder of the retina as a result of the impact of diabetes on the retinal blood vessels. It is the major cause of blindness in people like age groups between 20 & 60. Since polygenic disorder proceed, the eyesight of a patient may commence to deteriorate and causes blindness. In this proposed work, the existence or lack of retinal exudates are identified using Extreme Learning Machine(ELM). To discover the occurrence of exudates features like Mean, Standard deviation, Centroid and Edge Strength are taken out from Luv color space after segmenting the Retinal image. A total of 100 images were used, out of which 80 images were used for training and 20 images were used for testing. The classification task carried out with classifier extreme learning machine (ELM). An experimental result shows that the model built using Extreme Learning Machine outperforms other two models and effectively detects the presence of exudates in retinaItem DIABETIC RETINAL EXUDATES DETECTION USING MACHINE LEARNING TECHNIQUES(International Conference on Advanced Computing & Communication Systems, held at Sri Eshwar College of Engineering, Coimbatore during 5-7 January 2015 and published in the conference proceedings, indexed in IEEE Xplore Digital Library., 2015-01-05) Asha P R; Karpagavalli SDiabetic Retinopathy (DR) is an eye filled illness caused by the complication of polygenic disease and that is to be detected accurately for timely treatment. As polygenic disease progresses, the vision of a patient could begin to deteriorate and leads to blindness. In this proposed work, the presence or absence of retinal exudates are detected using machine learning (ML) techniques. To detect the presence of exudates features like Mean, Standard deviation, Centroid and Edge Strength are extracted from Luv color space after segmenting the Retinal image. A total of 100 images were used, out of which 80 images were used for training and 20 images were used for testing. The classification task carried out with classifiers like Naive bayes (NB), Multilayer Perceptron (MLP) and Extreme Learning Machine (ELM). Experimental results shows that the model built using Extreme Learning Machine outperforms other two models and effectively detects the presence of exudates in retinal images.Item AN EFFICIENT CANCER CLASSIFICATION USING EXPRESSIONS OF VERY FEW GENES USING SUPPORT VECTOR MACHINE(Sun College of Engineering and Technology, Nagercoil, 2011-03-24) Arunpriya C; Balasaravanan T; Antony Selvadoss ThanamaniGene expression profiling by microarray technique has been effectively utilized for classification and diagnostic guessing of cancer nodules. Several machine learning and data mining techniques are presently applied for identifying cancer using gene expression data. Though, these techniques have not been proposed to deal with the particular needs of gene microarray examination. Initially, microarray data is featured by a high-dimensional feature space repeatedly surpassing the sample space dimensionality by a factor of 100 or higher. Additionally, microarray data contains a high degree of noise. The majority of the existing techniques do not sufficiently deal with the drawbacks like dimensionality and noise. Gene ranking method is later introduced to overcome those problems. Some of the widely used Gene ranking techniques are T-Score, ANOVA, etc. But those techniques will sometimes wrongly predict the rank when large database is used. To overcome these issues, this paper proposes a technique called Enrichment Score for ranking purpose. The classifier used in the proposed technique is Support Vector Machine (SVM). The experiment is performed on lymphoma data set and the result shows the better accuracy of classification when compared to the conventional method.Item AN EFFICIENT LEAF RECOGNITION ALGORITHM FOR PLANT CLASSIFICATION USING SUPPORT VECTOR MACHINE(Periyar University, Salem., 2012-03-21) Arunpriya C; Balasaravanan T; Antony Selvadoss ThanamaniRecognition of plants has become an active area of research as most of the plant species are at the risk of extinction. This paper uses an efficient machine learning approach for the classification purpose. This proposed approach consists of three phases such as preprocessing, feature extraction and classification. The preprocessing phase involves a typical image processing steps such as transforming to gray scale and boundary enhancement. The feature extraction phase derives the common DMF from five fundamental features. The main contribution of this approach is the Support Vector Machine (SVM) classification for efficient leaf recognition. 12 leaf features which are extracted and orthogonalized into 5 principal variables are given as input vector to the SVM. Classifier tested with flavia dataset and a real dataset and compared with k-NN approach, the proposed approach produces very high accuracy and takes very less execution time.Item ELECTROCARDIOGRAM BEAT CLASSIFICATION USING SUPPORT VECTOR MACHINE AND EXTREME LEARNING MACHINE(Springer, 2014) Banu Priya C V; Karpagavalli SThe Electrocardiogram (ECG) is of significant importance in assessing patients with abnormal activity in their heart. ECG Recordings of the patient taken for analyzing the abnormality and classify what type of disorder present in the heart functionality. There are several classes of heart disorders including Premature Ventricular Contraction (PVC), Atrial Premature beat (APB), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Paced Beat (PB), and Atrial Escape Beat (AEB).To analyze ECG various feature extraction methods and classification algorithms are used. The proposed work employed discrete wavelet transform (DWT) in feature extraction on ECG signals obtained from MIT-BIH Arrhythmia Database. The Machine Learning Techniques, Support Vector Machine (SVM) and Extreme Learning Machine (ELM) have been used to classify four types of heart beats that include PVC, LBBB, RBBB and Normal. The Performance of the classifiers are analyzed and observed that ELM-Radial Basis Function Kernel taken less time to build model and out performs SVM in predictive accuracy.Item FACIAL ANIMATION TECHNIQUE(PSGR Krishnammal College for Women, Coimbatore, 2011-10-01) Arunpriya C; Antony Selvadoss ThanamaniAn unsolved problem in computer graphics is the construction and animation of realistic human facial models. Traditionally, facial models have been built painstakingly by manual digitization and animated by ad hoc parametrically controlled facial mesh deformations or kinematics approximation of muscle actions. Fortunately, animators are now able to digitize facial geometries through the use of scanning range sensors and animate them through the dynamic simulation of facial tissues and muscles. However, these techniques require considerable user input to construct facial models of individuals suitable for animation polygonal modeling specifies exactly each 3d point, which connected to each other as polygons. This is an exacting way to get topology. Patches indirectly defines a smooth curve surface from a set of control points. A small amount of control points can define a complex surface. One type of spline is called NURBS, which stands for Non Uniform Rational B-Splines. This type of batch allows each control point to have its own weight that can affect the "pinch'" of the curve at the point. So they are considered the most versatile of batches. They work very well for organic smooth objects so hence they are well suited for facial modeling.Item AN INTERACTIVE TOOL FOR YARN STRENGTH PREDICTION USING SUPPORT VECTOR REGRESSION(CPS and indexed in Thompson CSI, 2010) Selvanayaki M; Vijaya M S; Jamuna K SCotton, popularly known as White Gold has been an important commercial crop of National significance due to the immense influence of its rural economy. Transfer of technology to identify the quality of fibre is gaining importance. The physical characteristics of cotton such as fiber length, length distribution, trash value, color grade, strength, shape, tenacity, density, moisture absorption, dimensional stability, resistance, thermal reaction, count, etc., contributes to determine the quality of cotton and in turn yarn strength. In this paper yarn strength prediction has been modeled using regression. Support Vector regression, the supervised machine learning technique has been employed for predicting the yarn strength. The trained model was evaluated based on mean squared error and correlation coefficient and was found that the prediction accuracy of SVR based model, the intelligence reasoning method is higher compared with the traditional statistical regression, the least square regression model.Item LDA BASED TOPIC MODELING OF JOURNAL ABSTRACTS(International Conference on Advanced Computing & Communication Systems, held at Sri Eshwar College of Engineering, Coimbatore during 5-7 January 2015 and published in the conference proceedings, indexed in IEEE Xplore Digital Library., 2015-01-05) Anupriya P; Karpagavalli STopic modeling is a powerful technique for unsupervised analysis of large document collections. Topic models conceive latent topics in text using hidden random variables, and discover that structure with posterior inference. Topic models have a wide range of applications like tag recommendation, text categorization, keyword extraction and similarity search in the broad fields of text mining, information retrieval, statistical language modeling. In this work, a dataset with 200 abstracts fall under four topics are collected from two different domain journals for tagging journal abstracts. The document models are built using LDA (Latent Dirichlet Allocation) with Collapsed Variational Bayes and Gibbs sampling. Then the built model is used to extract appropriate tags for abstracts. The performance of the built models are analyzed by the evaluation measure perplexity and observed that Gibbs sampling outperforms CV B0 sampling. Tags extracted by two algorithms remains almost the same.Item LUNG CANCER DISEASE PREDICTION AND CLASSIFICATION BASED ON FEATURE SELECTION METHOD USING BAYESIAN NETWORK, LOGISTIC REGRESSION, J48, RANDOM FOREST, AND NAÏVE BAYES ALGORITHMS(2023-03-31) Viji Cripsy J; Divya TPeople who have never smoked can get lung cancer, but smokers have a higher risk than non-smokers. Any aspect of the respiratory system can be affected by lung cancer, which can start anywhere in the lungs, Different classification methods are used for lung cancer prediction. This article uses five different classification algorithms to predict lung cancer in patients using Kaggle dataset. Bayesian Network, Logistic Regression, J48, Random Forest and Naive Bayes methods are used, Based on the carefully identified correct and incorrect cases, the quality of the result was measured using the evaluation technique and the WEKA tool. The experimental results showed that Logistic Regression performed best (91.90 % ), followed by Naive Bayes (90.29 % ), Bayesian Network (88.34 % ), j48 (86.08 % ) and Random Forest (90.93 % ).Item MAMMOGRAM CLASSIFICATION USING EXTREME LEARNING MACHINE AND GENETIC PROGRAMMING(IEEE Xplore, 2014-01-03) Menaka K; Karpagavalli SMammogram is an x-ray examination of breast. It is used to detect and diagnose breast disease in women who either have breast problems such as a lump, pain or nipple discharge as well as for women who have no breast complaints. Digitized mammographic image is analysed for masses, calcifications, or areas of abnormal density that may indicate the presence of cancer. Automated systems to analyse and classify the mammogram images as benign or malignant will drive the medical experts to take timely clinical decision. In this work, the mammogram classification task carried out using powerful supervised classification techniques namely Extreme Learning Machine with kernels like linear, polynomial, radial basis function and Genetic Programming. The various task involved in this work are image preprocessing, feature extraction, building models through training and testing the classifier. The two types of mammogram image, Benign and Malignant are considered in this work and 50 images for each type collected from Mini MIAS database. Selection of Region of Interest (ROI) from the original image and Adaptive Histogram Enhancement are applied on the mammogram image before extracting the intensity histogram and gray level co-occurrence matrix features. In the dataset, for training 80% of the data are used and for testing 20% of data are used. Models are built using Extreme Learning Machine and Genetic Programming. The performances of the models are tested with test dataset and the results are compared. The predictive accuracy and training time of the classifier Genetic Programming is substantially better than the classifier built using Extreme Learning Machine with kernels linear, polynomial and radial basis function.Item MULTI-CLASS CLASSIFICATION OF INSECTS USING DEEP NEURAL NETWORKS(IEEE Xplore, 2023-01-23) Santhiya M; Priyadharshini M; Agshalal Sheeba J; Karpagavalli SInsects are crucial to the functioning of nature. There are more than a million described species of living beings in the modern world. Since the majority of today’s farmers and agriculturalists are newer generations of people, identifying and classifying insects is essential. The classification of insects is a difficult undertaking in the agricultural industry. In the proposed work, multi-class classification of insects using a Convolutional Neural Network architecture, VGG19 had been carried out. In the taxonomic classification of insects, 5 insects fall within insecta class which include butterfly, dragonfly, grasshopper, ladybird, and mosquito data had been collected to train, test, and validate the convolutional neural network, The performance of the model had been analyzed using different parameters and presented.Item MULTI-LABEL CLASSIFICATION- PROBLEM TRANSFORMATION METHODS IN TAMIL PHONEME CLASSIFICATION(In Proceedings of 7th International Conference on Advances in Computing & Communications (ICACC August 2017), Kochi, Elsevier Procedia Computer Science., 2017) Pushpa M; Karpagavalli SMost of the supervised learning task has been carried out using single label classification and solved as binary or multiclass classification problems. The hierarchical relationship among the classes leads to Multi- Label (ML) classification which is learning from a set of instances that are associated with a set of labels. In Tamil language, phonemes fall into different categories according to place and manner of articulation. This motivates the application of multi-label classification methods to classify Tamil phonemes. Experiments are carried out using Binary Relevance (BR) and Label Powerset (LP) and BR’s improvement Classifier Chains (CC) methods with different base classifiers and the results are analysed.