International Conference
Permanent URI for this collectionhttps://dspace.psgrkcw.com/handle/123456789/162
Browse
Item A DEEP ENSEMBLE MODEL FOR AUTOMATED MULTICLASS CLASSIFICATION USING DERMOSCOPY IMAGES(IEEE, 2022-03-31) Kalaivani A; Karpagavalli SIn medical diagnosis, manual skin tumor treatment is time consuming and exclusive, it is important to create computerized analytic strategies that can accurately classify skin lesions of many stages. A completely automatic way to classify skin lesions of many categories has been presented. Automatic dissection of skin lesions and isolation are two major and related functions in the diagnosis of computer-assisted skin cancer. Even with their widespread use, deep learning models are typically only intended to execute a single task, neglecting the potential benefits of executing both functions simultaneously. The Bootstrapping Ensembles based Convolutional Neural Networks (BE-CNN) model is proposed in this paper for the separation of skin lesions simultaneously and for classification. A Compute-Intensive Segmentation Network (CI-SN), comprise this model (improved-SN). On one hand, Compute-Intensive Segmentation Network creates uneven lesion covers that serves as a pre-bootstrapping, allowing it to reliably find and classify skin lesions. Both division and arrangement networks, in this approach, mutually transmit assistance and experience each other in a bootstrapping manner. However, to deal with the challenges posed by class inequality and simple pixel inequality, a novel method in segmentation networks is proposed. On the ISIC-HAM 10000 datasets, the proposed BE-CNN model is evaluated and found that it achieves mean skin lesion classification accuracy of 93.8 percentile, which is higher than the function of the separation of skin lesions representing the modern condition and stages techniques. Proposed outcomes demonstrate that via preparing a bound together model to execute the two tasks in a non-stop bootstrapping strategy, it is feasible to work on the presentation of skin sore division and grouping simultaneously.Item DEEP NEURAL NETWORK OPTIMIZATION FOR SKIN DISEASE CLASSIFICATION FORECAST ANALYSIS(IEEE, 2022-03-26) Kalaivani A; Karpagavalli SSkin lesions are a prevalent condition that causes misery, many of which can be severe, for millions of individuals worldwide. Consequently, Deep learning seems to be an increasingly popular approach in recent years, and it may be a strong tool in difficult, earlier domains, specifically in health science, which is now dealing with a number of medical resources. In this paper, presented an interactive dermoscopy images diagnosis framework based on an gathering of intelligent deep learning model system for image classification to make advances their person accuracies within the prepare of classifying dermoscopy pictures into several classes such as melanoma, keratosis and nevus when we have not sufficient annotated images to train them on. We integrate the classification layer results for two distinct deep neural network designs to obtain excellent classification accuracy. More precisely, we combining robust convolutional neural networks (CNNs) into a unified structure, with the final classification relying on the weighted outcome of the respective CNNs by predictive ensemble methods and fine-tuning classifiers utilizing ISIC2019 images. Furthermore, the outliers and the substantial class imbalance are handled in order to improve the categorization of the disease. The experimental reveal that the framework produced result that are comparable to other models of conventional art. A substantial improvement in accuracy of 96.2 percentage indicated the efficiency of the proposed Predictive Ensemble Deep Convolutional Neural Networks Classifier (PE-DCNN Classifier) model and this study effectively built a system with all the important features.