International Conference
Permanent URI for this collectionhttps://dspace.psgrkcw.com/handle/123456789/162
Browse
Item PHONEME AND WORD BASED MODEL FOR TAMIL SPEECH RECOGNITION USING GMM-HMM(International Conference on Advanced Computing & Communication Systems, held at Sri Eshwar College of Engineering, Coimbatore during 5-7 January 2015 and published in the conference proceedings, indexed in IEEE Xplore Digital Library., 2015-01-05) Karpagavalli S; Chandra ESpeech is the standard means of communication among people. Automatic Speech Recognition (ASR) applications facilitate the users to interact with machines through speech and perform their tasks effortlessly. Speech Recognition applications in native languages will enable illiterate and semi-illiterate people to use computer services without any/little knowledge to operate computers and to lead better life. In the proposed work, speaker independent isolated- phoneme and word recognition systems have been developed for the Indian regional language Tamil. The Hidden Markov Tool Kit (HTK) was used for developing speaker independent phoneme and word based Tamil speech recognition system. The work involves main tasks like Feature Extraction, Acoustic Model Building and Decoding. Mel-Frequency Cepstral Coefficients (MFCC) is extracted from the speech utterances and Hidden Markov Model (HMM) used to build the acoustic model. In building acoustic model, Multivariate Gaussian Mixture Model with different number of components is used to estimate the state emission probabilities and finally Viterbi Decoder employed to recognize the test speech utterances. A small vocabulary of 50 words which are collected from 10 native speakers of Tamil language was used to build and test the model. The performance of both phoneme and word based models have been analyzed and the recognition accuracy and word error rate of the models are discussed.Item TAMIL PHONEME CLASSIFICATION USING CONTEXTUAL FEATURES AND DISCRIMINATIVE MODELS(International Conference on Communication and Signal Processing (ICCSP’15), Adhiparasakthi Engineering College, Melmaruvathur, indexed in IEEE Xplore Digital Library, 2015, 2015) Karpagavalli S; Chandra EThe speech recognition systems may be designed based on any one of the sub-word unit phoneme, tri-phone and syllable. The phonemes are a set of base-forms for representing the unique sounds in a particular language. In supervised phoneme classification, the segmentation of phoneme, features and class label are given and the goal is to classify the phoneme. Phoneme classification and recognition can be useful in applications such as spoken document retrieval, named entity extraction, out-of-vocabulary detection, language identification, and spoken term detection. In trained speech, each phoneme occurs clearly in speech waveform. In spontaneous speech, due to co-articulation effect, influence of adjacent phonemes is present in each phoneme where left and right context frame information plays vital role in accurate phoneme classification. In the proposed work, three discriminative classifiers like Multilayer Perceptron, Naive Bayes and Support Vector Machine are used to classify 25 phonemes of Tamil language. The approximate boundaries of phoneme identified using Spectral Transition Measure (STM). After segmentation, Mel Frequency Cepstral Co-Efficient (MFCC) of 9 frames including 4 left context frames, 1 centre frame corresponding to the phoneme and 4 right context frames are extracted and used as input to classifiers. Tamil word dataset prepared to cover 25 phonemes of the language. The performance of the classifiers are analysed and results are presented.