DEVELOPMENT OF MODIFIED RIPPER ALGORITHM TO PREDICT CUSTOMER CHURN

dc.contributor.authorM, Rajeswari
dc.date.accessioned2020-06-17T10:06:17Z
dc.date.available2020-06-17T10:06:17Z
dc.date.issued2018-02
dc.description.abstractTechnologies such as data warehousing, data mining, and campaign management software have made Customer Relationship Management (CRM) a new area where firms can gain a competitive advantage. Particularly through data mining a process of extracting hidden predictive information from large databases, organizations can identify their valuable customers, predict future behaviors, and enable firms to make proactive, knowledge-driven decisions. Data Mining along with Customer Relationship Management plays a vital role in today’s business environment. Customer churn, a process of retaining customer is a major issue. Prevention of customer churn is a major problem because acquiring new customer is more expensive than holding existing customers. In order to prevent churn several data mining techniques have been proposed. One among such method is solving class imbalance which has not received much attention in the context of data mining. This paper describes Customer Relationship Management (CRM), customer churn and class imbalance and proposes a methodology for preventing customer churn through class imbalance.en_US
dc.identifier.issnOnline:2393-9877
dc.identifier.issnPrint:2394-2444
dc.identifier.urihttps://dspace.psgrkcw.com/handle/123456789/200
dc.language.isoenen_US
dc.publisherInternational Journal of Advance Research in Engineering Science and Technologyen_US
dc.subjectData Miningen_US
dc.subjectCustomer Relationship Managementen_US
dc.subjectChurnen_US
dc.subjectClass Imbalanceen_US
dc.titleDEVELOPMENT OF MODIFIED RIPPER ALGORITHM TO PREDICT CUSTOMER CHURNen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DEVELOPMENT OF MODIFIED RIPPER ALGORITHM TO PREDICT CUSTOMER CHURN.docx
Size:
10.52 KB
Format:
Microsoft Word XML

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: