2.Conference Paper (07)

Permanent URI for this collectionhttps://dspace.psgrkcw.com/handle/123456789/4825

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    SUPPORT VECTOR MACHINE BASED EPILEPSY PREDICTION USING TEXTURAL FEATURES OF MRI (Conference Paper)
    (Elsevier Ltd, 2010) Sujitha, V; Sivagami, P; Vijaya, M S
    Epilepsy is a disorder of the central nervous system, specifically the brain. It is a neurological malfunction affecting about 1% of the population and is the third most common neurological disorder following rheumatic heart disease and Alzheimer’s disease, but it imposes higher costs on society. Magnetic Resonance Imaging (MRI) is one of the most common diagnostic tests used for patients for epilepsy prediction. Shortage of radiologists and the large volume of MRI scan images that need to be analyzed may lead to labor intensive, expensive and inaccurate prediction. Hence there is a need to generate an efficient prediction model for making a correct diagnosis of epilepsy and accurate prediction of its type. This paper describes the modeling of epilepsy prediction using Support Vector Machines (SVM), a machine learning algorithm. The prediction model has been generated by training the support vector machine with descriptive features derived from MRI data of 350 patients and observed that the SVM based model with a Radial Basis Function (RBF) kernel produces 93.87% of prediction accuracy.
  • Item
    CLASSIFICATION OF SEED COTTON YIELD BASED ON THE GROWTH STAGES OF COTTON CROP USING MACHINE LEARNING TECHNIQUES (Conference Paper)
    (IEEE Xplore, 2010-07-29) Jamuna, K S; Karpagavalli, S; Vijaya, M S; Revathi, P; Gokilavani, S; Madhiya, E
    Cotton, popularly known as "White Gold" has been an important commercial crop of national significance due to the immense influence of its rural economy. Cotton seed is an important and critical link in the chain of agricultural activities extending farmer industry linkage. Cotton yield is associated with high quality seed as the seed contains in itself the blue print for the agrarian prosperity in incipient form. Transfer of technology to identify the quality of seeds is gaining importance. Hence this work employs machine learning approach to classify the quality of seeds based on the different growth stages of the cotton crop. Machine learning techniques - Naïve Bayes Classifier, Decision Tree Classifier and Multilayer Perceptron were applied for training the model. Features are extracted from a set of 900 records of different categories to facilitate training and implementation. The performance of the model was evaluated using 10 -fold cross validation. The results obtained show that Decision Tree Classifier and Multilayer Perceptron provides the same accuracy in classifying the seed cotton yield. The time taken to build the model is higher in Multilayer Perceptron as compared to the Decision Tree Classifier.
  • Item
    ELECTROENCEPHALOGRAM WAVE SIGNAL ANALYSIS AND EPILEPTIC SEIZURE PREDICTION USING SUPERVISED CLASSIFICATION APPROACH (Conference Paper)
    (ACM Digital Library, 2010-09-16) Devi S. T, Pavithra; Vijaya, M S
    The transient and unexpected electrical disturbances of the brain results in an acute disease called Epileptic seizures. A significant way for identifying and analyzing epileptic seizure activity in human is by using electroencephalogram (EEG) signal. Manually reviewing and analyzing lengthy data of EEG recordings, for detection and classification of electro graphical patterns at present requires trained personnel and time consuming. Hence, there is a need for an efficient automated system based on pattern classification for analysis and classification of seizure-related EEG signals to assist the expert in the diagnosis. This paper presents the modeling of epileptic seizure prediction as binary classification problem and provides a suitable solution by implementing supervised classification algorithms, namely Decision table, Naive Baye's Tree, k-NN and support vector machine. The classification models are trained using the EEG data sets and the prediction accuracy of the classifier has been evaluated using 10-fold cross validation. It has been observed that the model produce about 86% of prediction accuracy in predicting the presence of epileptic seizure in human brain.