1.Article (36)
Permanent URI for this collectionhttps://dspace.psgrkcw.com/handle/123456789/3907
Browse
Item DEVELOPMENT OF POLY(GLYCEROL SUBERATE) POLYESTER (PGS)–PVA BLEND POLYMER ELECTROLYTES WITH NH4SCN AND ITS APPLICATION(Springer Link, 2018-02-28) Nusrath Unnisa, C; Chitra, S; Selvasekarapandian, S; Monisha, S; Nirmala Devi, G; Moniha, V; Hema, MBesides commercially available synthetic polymers, the present work has been undertaken to explore the significance of poly(glycerol suberate) (PGS) polyester synthesised under lab scale in energy storage device. In this regard, a blend polymer electrolyte comprising of polyvinyl alcohol (PVA), poly(glycerol suberate) (PGS) polyester along with the various proportions of ammonium thiocyanate (NH4SCN) was prepared adopting solution casting technique. The synthesised polyester PGS was characterised by Fourier transform infrared (FT-IR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The prepared electrolyte film was subjected to FT-IR analysis to study the complexation that has occurred within the blend. Its amorphous nature was revealed from X-ray diffraction (XRD) studies. Influence of NH4SCN on the glass transition temperature (Tg) was drawn from differential scanning calorimetry (DSC) technique. The dispersion of dopant within the polymer matrix was supported by scanning electron microscopy (SEM) followed by its elemental composition from energy dispersive spectroscopy (EDS). From the AC impedance technique, maximum conductivity of 3.01 × 10−4 S cm−1 was elicited for the optimised electrolyte (1 g PVA + 0.75 g PGS + 0.6 g NH4SCN). Frequency-dependent dielectric and modulus spectra were analysed to study the mechanism of transportation. Transport parameters evaluated by Wagner’s polarisation method proved that the conductivity was predominantly due to cations. Proton conducting battery was configured with the highest conducting electrolytic film and its cell parameters are presented.Item SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL INVESTIGATIONS OF NOVEL SCHIFF BASE LIGANDS CONTAINING IMIDAZOLINE MOIETY AND THEIR CO(II) AND CU(II) COMPLEXES(Elsevier, 2018-08-05) Radha, V P; Jone Kirubavathy, S; Chitra, SNovel imidazoline based Schiff base ligands L1 and L2 were synthesized from o-phenylenediamine/o-aminophenol with creatinine. The ligands were complexed with Co(II) and Cu(II) by direct reaction with metal salts. The synthesized ligands and the metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, mass, electronic, thermal analyses, conductivity and magnetic susceptibility measurements. The conductivity measurements showed the non-electrolytic nature of the complexes. The thermogravimetric analyses confirmed the presence of lattice and coordinated water molecules in the complexes. The DFT calculations were carried out at B3LYP/6-31G(d,p) level for the determination of the optimized structure of the ligands. The synthesized ligands and the metal complexes were screened for their antimicrobial activity against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The outcomes revealed that the metal complexes showed pronounced activity than the ligands.