SURVEY ON LINK PREDICTION AND PAGE RANKING IN BLOGS
No Thumbnail Available
Date
2012-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
International Journal of Engineering Research and Applications
Abstract
This paper presents a study of the various aspects of link prediction and page ranking in blogs. Social networks have taken on a new eminence from the prospect of the analysis of social networks, which is a recent area of research which grew out of the social sciences as well as the exact sciences, especially with the computing capacity for mathematical calculations and even modelling which was previously impossible. An essential element of social media, particularly blogs, is the hyperlink graph that connects various pieces of content. Link prediction has many applications, including recommending new items in online networks (e.g., products in eBay and Amazon, and friends in Face book), monitoring and preventing criminal activities in a criminal network, predicting the next web page users will visit, and complementing missing links in automatic web data crawlers. Page Rank is the technique used by Google to determine importance of page on the web. It considers all incoming links to a page as votes for Page Rank. Our findings provide an overview of social relations and we address the problem of page ranking and link prediction in networked data, which appears in many applications such as network analysis or recommended systems.
Description
Keywords
web log, social networks analysis, readership, link prediction, Page ranking