GENERALIZED 2-COMPLEMENT OF SET DOMINATION
No Thumbnail Available
Date
2015-12
Journal Title
Journal ISSN
Volume Title
Publisher
International journal of Scientific & Technology research volume 4, Issue 12
Abstract
Let G=(V,E) be a simple, undirected, finite nontrivial graph and P= (V1,V2,….., VK) be a partition of V of order k>1.The k-complement Gk p of G (with respect to P) is defined as follows: For all Vi and Vj in P ij remove the edges between Vi and Vj in G and join the edges between Vi and Vj which are not in G. The graph thus obtained is called the kcomplement of G with respect to P. In this paper 2- complement is considered. Let G=(V,E) be a connected graph. A set SV is a set dominating set if for every set TV-S , there exists a non-empty set RS such that the subgraph is connected. The minimum cardinality of a set dominating set is called set domination number and it is denoted by γs (G). In the following example the set domination number γs is calculated..
Description
Keywords
Dominating set, set dominating set, 2-complement of G