INTEGRATED FRAMEWORK FOR INTRUSION DETECTION THROUGH ADVERSARIAL SAMPLING AND ENHANCED DEEP CORRELATED HIERARCHICAL NETWORK
dc.contributor.author | Deepa, Venkatraman | |
dc.contributor.author | Radha, Narayanan | |
dc.date.accessioned | 2023-08-09T07:09:40Z | |
dc.date.available | 2023-08-09T07:09:40Z | |
dc.date.issued | 2022-08 | |
dc.description.abstract | Intrusion Detection Systems (IDSs) play a critical role in detecting malicious assaults and threats in the network system. This research work proposed a network intrusion detection technique, which combines an Adversarial Sampling and Enhanced Deep Correlated Hierarchical Network for IDS. Initially, the proposed Enhanced Generative Adversarial Networks (EGAN) method is used to raise the minority sample. A balanced dataset can be created in this way, allowing the model to completely learn the properties of minority samples while also drastically minimizing the model training time. Then, create an Enhanced Deep Correlated Hierarchical Network model by using a Bi-Directional Long Short-Term Memory (BiLSTM) to collect temporal characteristics and Cross-correlated Convolution Neural Network (CCNN) to retrieve spatial characteristics. The softmax classifier at the end of BiLSTM is used to classify intrusion data. The traditional NSL-KDD dataset is utilized for the experimentation of the proposed model. | en_US |
dc.identifier.uri | https://threatenedtaxa.org/index.php/JoTT/article/view/7517/8767 | |
dc.language.iso | en_US | en_US |
dc.publisher | IIETA | en_US |
dc.subject | intrusion detection | en_US |
dc.subject | convolution neural network | en_US |
dc.subject | deep learning | en_US |
dc.subject | deep hierarchical network | en_US |
dc.subject | adversarial sampling | en_US |
dc.title | INTEGRATED FRAMEWORK FOR INTRUSION DETECTION THROUGH ADVERSARIAL SAMPLING AND ENHANCED DEEP CORRELATED HIERARCHICAL NETWORK | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- INTEGRATED FRAMEWORK FOR INTRUSION DETECTION THROUGH ADVERSARIAL SAMPLING AND ENHANCED DEEP CORRELATED HIERARCHICAL NETWORK.pdf
- Size:
- 3.97 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: