International Conference

Permanent URI for this collectionhttps://dspace.psgrkcw.com/handle/123456789/41

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    EXPLORATION OF KNIPO4 AS A NEW CLASS OF POSITIVE ELECTRODE MATERIAL FOR HYBRID SUPERCAPACITORS
    (Bannari Amman Institute of Technology, Sathyamangalam, 2017-08-17) N, Priyadharsini; R, Kalai Selvan
    A facile sol-gel thermolysis route was adopted to synthesize KNiPO4 nano-sheets for the hybrid supercapacitor applications. The phase purity, homogeneity, and functional groups present in the synthesized KNiPO4 were characterized through X-ray diffraction and FTIR measurements. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images showed that the nano-sheet-like particles were loosely stacked. The electrochemical properties of the KNiPO4 electrode were studied in various aqueous-based electrolytes such as 1 M LiOH, 1 M NaOH, and 1 M KOH to explore their superior performances. Among these electrolytes, the KNiPO4 electrode provided a maximum specific capacity of 278 C g-1 in 1 M KOH at 5 mV s-1. A hybrid supercapacitor was fabricated using the synthesized KNiPO4 as the positive electrode and activated carbon as the negative electrode in a 1 M KOH aqueous electrolyte. The supercapacitor exhibited a specific capacitance of 48 F g-1 in 1 M KOH at 0.6 mA cm-2 and energy density of 13 Wh kg-1 at a power density of 59 W kg-1. In addition, the hybrid system retained 93% of its initial specific capacitance even after 2000 cycles. KNiPO4 based hybrid system thus exhibits super characteristics and hence is a promising candidate for high-performance electrochemical energy storage devices.
  • Item
    COMBUSTION SYNTHESIS OF NOVEL CATHODE MATERIAL OF KMNPO4 FOR SUPERCAPACITORS
    (CSIR –National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 2014-02-19) N, Priyadharsini; R, Kalai Selvan
    KMnPO4 has prepared as a unique supercapacitor material because of the extensive electrochemical properties of LiMnPO4, which is proved as a one of the best cathode materials1. The compound was synthesized via combustion synthesis using potassium acetate, manganese acetate and ammonium dihydrogen phosphate as precursors with a fuel of citric acid. Structural, surface morphology were studied by XRD, FTIR and TEM analysis and the sample encompass the structure of triclinic having the space group of P (2). The electrochemical properties were observed using cyclic voltammetry, galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy in a three electrode system at a potential range from -0.6 to 0.6 V vs Hg/HgO. The variation in the electrochemical performance of the sample was studied in three different electrolytes such as 1M LiOH, 1M KOH and 1M NaOH. The result shows that KMnPO4 exhibits higher capacitance of 335 F/g at a scan rate of 2mVs-1 for 1M NaOH. This material shows good specific capacity; replace with all the available Li based Manganese pseudocapacitors which are already proved their recital.