Browsing by Author "Subha, D"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item EXOSOMES FOR SKIN TREATMENT: THERAPEUTIC AND COSMETIC APPLICATIONS (Review)(KeAi Publishing Communications Ltd., 2024-09) Sreeraj, Harsha; AnuKiruthika, R; Tamilselvi, K S; Subha, DThe therapeutic potential of exosomes, which are nano-sized extracellular vesicles derived from various cell types, have drawn substantial interest in the field of dermatology. Exosomes have distinctive capabilities, including facilitating intercellular communication, delivering bioactive molecules, and modulating immune responses, which make them promising candidates for skin regeneration, wound healing, and treating dermatological disorders. Specifically, exosomes derived from the stem cells of mesenchymal and adipose cells, have numerous applications in skin repair and regeneration. Exosomes also find expanded applications in treatments and therapies related to hair. Exosomes emit signals and growth factors that impact the activity of nearby epithelial cells, encouraging their growth, specialization, and the development of hair formations. This review explores the efficacy of topical and transdermal applications of exosomes in skin and hair and highlight the transformative potential of exosome-based therapies in dermatology and pave the way for future research and clinical applications.Item PLANT DERIVED EXOSOME- LIKE NANOVESICLES: AN UPDATED OVERVIEW(Elsevier, 2023-02) Subha, D; Harshnii, K; Madhikiruba, K G; Nandhini, M; Tamilselvi, K SExosomes are nanovesicles in the size range of 30–150 nm, produced by mammalian and plant cells. They have the lipid bilayer enclosing a unique mix of biologically active components including proteins, nucleic acids, metabolites and lipids, that depend on their source of origin. The plant derived nanovesicles are gaining considerable research attention due to their ability to be absorbed from the dietary sources. Their bioactive components impart many therapeutic properties to them such as anti-tumorigenic, anti-oxidative, anti-inflammatory, hepatoprotective effects and tissue regeneration. The possibilities of using plant derived exosomes for drug delivery is also promising. This review focusses on the biogenesis and biological nature of exosomes derived from plants and describes their various inherent therapeutic properties. It sheds light on the recently developed methods to study them. The existing challenges in the exosomal research as well as the future prospective are highlighted. Overall, it is an update on the advancements on the research in plant exosomes which can provide a replacement for toxic synthetic drugs and possibilities for disease therapy.Item PLANT EXOSOMES: NANO CONVEYORS OF PATHOGEN RESISTANCE(Springer Link, 2023-11-30) Subha, D; AnuKiruthika, R; Harsha, Sreeraj; Tamilselvi, K SThe entry of a pathogen into a plant host is a complex process involving multiple steps. Survival techniques from the pathogen and the defense mechanisms of the plant lead to a plethora of molecular interactions during the operation. Plant extracellular vesicles, especially the exosomes in the size range of 50–150 nm play a crucial role in plant defense. They act as signalosomes capable of transporting bioactive lipids, proteins, RNA and metabolites between the host and the pathogen. Recent research works have revealed that anti-microbial compounds, stress response proteins and small RNA are among the contents of these extracellular vesicles. The current review article analyses the cruciality of the cross-talk between the host and the pathogen organized through trafficking of small RNA via exosomes towards RNA induced gene silencing in the pathogenic organisms. Recent studies have shown that extracellular vesicles released by both plants and the pathogens, play a crucial role in cross-kingdom communication, thereby regulating the host response and contributing to plant immunity. An in-depth understanding of the mechanism by which the EVs mediate this inter-species and cross-kingdom regulation is currently needed to develop sustainable plant-protection strategies. The review highlights on the latest advances in understanding the role of EVs in establishing host–pathogen relationship, modulating plant immunity and approaches for how these findings can be developed into innovative strategies for crop protection.Item PLANT EXOSOMES: NANO CONVEYORS OF PATHOGEN RESISTANCE(Discover Nano, 2023-11) Subha, D; AnuKiruthika, R; Harsha, Sreeraj; Tamilselv, K SThe entry of a pathogen into a plant host is a complex process involving multiple steps. Survival techniques from the pathogen and the defense mechanisms of the plant lead to a plethora of molecular interactions during the operation. Plant extracellular vesicles, especially the exosomes in the size range of 50–150 nm play a crucial role in plant defense. They act as signalosomes capable of transporting bioactive lipids, proteins, RNA and metabolites between the host and the pathogen. Recent research works have revealed that anti-microbial compounds, stress response proteins and small RNA are among the contents of these extracellular vesicles. The current review article analyses the cruciality of the cross-talk between the host and the pathogen organized through trafcking of small RNA via exosomes towards RNA induced gene silencing in the pathogenic organisms. Recent studies have shown that extracellular vesicles released by both plants and the pathogens, play a crucial role in cross-kingdom communication, thereby regulating the host response and contributing to plant immunity. An in-depth understanding of the mechanism by which the EVs mediate this interspecies and cross-kingdom regulation is currently needed to develop sustainable plant-protection strategies. The review highlights on the latest advances in understanding the role of EVs in establishing host–pathogen relationship, modulating plant immunity and approaches for how these fndings can be developed into innovative strategies for crop protection.