Browsing by Author "K, Indumathi"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item EFFECT OF PEPTIDIC BACKBONE ON THE NUCLEIC ACID DIMERIC STRANDS(Taylor & Francis, 2019-03-01) K, Indumathi; A, Abiram; G, PraveenaThis study explores the effect of N-(2-aminoethyl)-glycine peptide chain incorporated at the backbone of nucleic acid dimeric strands on the basis of reactivity descriptors. The structures of obtained PNA dimeric strands were examined through backbone (α, β, γ, δ, ε and ω) and linker (χ1, χ2 and χ3) torsions. The calculated torsions were found to coincide well the available experimental and theoretical data. The peptidic chain incorporated nucleic acid dimers show a drastic change in global reactivity descriptor (gr) values. The vertical ionisation potential (VIP) and polarizability (α′) of peptide chain incorporated Guanine constructs are found to be higher by about 0.24 eV and 98.49 Å3 than their natural counterparts. The obtained gr along with frontier molecular orbitals depict G-containing dimeric strands to have efficient donor and acceptor capability with improved sensitivity upon peptide chain inclusion. This study in general could serve as a basic tool to understand the reactivity properties of PNA modularities, which are the possible building blocks of extended nanostructures.Item EXCITED STATES OF PNA BASE PAIRS – A THEORETICAL APPROACH(PSGR Krishnammal College for Women, 2018-07-21) K, Indumathi; G, PraveenaTime dependent density functional theory (TDDFT) calculations using B3LYP/6-311++G** level of theory were presented to understand the basic structural properties of peptidic chain added Watson Crick base pairs and compared to their natural counterparts. The excitation energy, oscillator strength, energy gap and wavelength of the all the base pairs were taken for the analysis. This study would pave way to understand the electronic excitation properties of all the Peptide Nucleic Acid (PNA) base pairs for the better understanding of the transitions and the luminescence properties of synthetic oligonucleotides structures.