Browsing by Author "Jimmandiyur, Mathappan Murugan"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item THE BIOTRANSFORMATION POTENTIAL OF BACILLUS CEREUS ON Β- CYPERMETHRIN TO PROTECT THE EARTHWORM (PERIONYX EXCAVATUS) ON INSECTICIDE -CONTAMINATED SOIL(Taylor & Francis Online, 2022) Mathiyazhagan, Narayanan; Jimmandiyur, Mathappan Murugan; Gajendiran, Kandasamy; Sabariswaran, Kandasamy; Manikandan, RajendranThe pre-isolated B. cereus had shown better β-cypermethrin resistance at 100 mg L−1 dosage in the Mineral Salt Medium (MSM). Hence, it was applied for the biodegradation study on MSM. The GC-MS analysis revealed that the B. cereus had the potential to degrade β-cypermethrin and metabolize it into six predominant less or nontoxic components (benzene, 1-ethyl−3-methyl-, ethanethiol, 2-(dimethylamino)-, 1-(2-acetoxyethyl)-3,6-diazahomoadamantan-9-one, silane, 9-anthracenyltrimethyl-, 1-(3-hydroxy-3-methylbutyl)-3,6-,fumaric acid). Based on this biodegradation potential, four experimental groups, namely A, B, C, D and control, were framed and the biodegradation potential of B. cereus on β-cypermethrin and interaction with P. excavates were studied. Group C, which includes B. cereus and 10 P. excavates under β-cypermethrin stress excavates positive survival interaction. It was confirmed by the presence of metabolites such as benzene, 1-ethyl-3-methyl-, ethanethiol, 2-(dimethylamino)- and 1-(2-acetoxyethyl)-3,6-diazahomoadamantan-9-one, in P. excavates. Furthermore, these were similar to the metabolites of β-cypermethrin degraded by B. cereus. These results conclude that the biodegradation potential of B. cereus can protect the life of P. excavates from β-cypermethrin toxicity and thus, can support the balancing of soil fertility, structure and soil biotas such as flora and fauna.