Browsing by Author "Gaber A M, Mersal"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item EVALUATION OF GAS SENSOR BEHAVIOUR OF SM3+ DOPED TIO2 NANOPARTICLES(Springer Link, 2021-05-29) Nithya, N; Ranjith Kumar, E; Magesh, G; Arun, A P; Khlood S, Abou-Melha; Gamila, Badr; Nashwa M, El-Metwaly; Gaber A M, Mersal; Sharmila Rahale, CThe Sol–Gel approach is used to synthesize samarium-doped TiO2 nanoparticles (Sm- TiO2 NPs). Research on the structural, morphological and optical properties of TiO2 nanoparticles by XRD, FESEM, TEM, UV, FTIR, and PL was used. The Sm-TiO2 NPs are verified by the XRD profile of anatase, brookite and rutile phase structures. Crystallite size decreases when Sm doped with TiO2 nanoparticles. The external morphologies of the TiO2 nanoparticles in spherically shaped Sm are captured by FESEM. The sample size distribution and polycrystalline composition of the particles have been analyzed using TEM. The EDX spectrum verifies the presence of Ti, O and Sm elements of all the samples. The values have been found to be very close to what has been expected. Sm substitution greatly affected the optical bandgap of TiO2 nanoparticles. It shows that the band gap decreases from 3.64 to 3.61 eV as the concentrations of Sm increases. FTIR confirms the presence of functional groups and Ti–O bonds present in the prepared sample. PL analysis shows the emission for violet range. Using the dip-coating process, a thin film for sensor function is developed. PVDF flat sheet membrane is used as a substrate for sensing material. For various ethanol concentrations with optimized operating temperatures of 303 K, the sensing behaviour of the sensor element is investigated. The very rapid reaction and recovery time of 10 s and 8 s shows that the prepared samples are appropriate for gas sensor applications.Item NATURAL CITRIC ACID (LEMON JUICE) ASSISTED SYNTHESIS OF ZNO NANOSTRUCTURES: EVALUATION OF PHASE COMPOSITION, MORPHOLOGY, OPTICAL AND THERMAL PROPERTIES(Elsevier, 2021-08-15) Vandamar Poonguzhali R; Ranjith Kumar E; Sumithra M.G; Arunadevi N; Sharmila Rahale C; Alaa M, Munshi; Gaber A M, Mersal; Nashwa M, El-MetwalyIn recent years, because of their excellent electrocatalytic action and applications in different fields, metal oxide nanostructures have received massive consideration from scientists. Zinc oxide nanostructures are useful materials for a range of sensing applications and possess admirable electrocatalytic properties and stability. The current research presents the natural citric acid assisted synthesis of ZnO nanostructures and their structural, optical, morphological and thermal properties. X-ray diffraction was studied for the phase assessment of as prepared (Z1) and annealed ZnO (Z2) nanostructures and the crystallite sizes of the Z1 and Z2 samples were also located in the range between 35 nm and 38 nm. FESEM and TEM experiments were carried out to explore the surface features of Z1 and Z2 samples. The polycrystalline existence of the samples is demonstrated by the hexagonal, cubic and spherical shaped ZnO nanostructures. The energy band gap of Z1 and Z2 samples was determined (3.16 eV for Z1 and 3.12 eV for Z2) from the UV spectrum. The impact of annealing treatment on the thermal stability of ZnO nanostructures was studied and the main peak was observed for the Z1 sample at ~249 °C and for the Z2 sample at ~289 °C.